
Recap: Normal Distribution

The heights of adult men in the United States are normally distributed with a mean 
of 175 cm and a standard deviation of 8 cm.

Suppose a car is built so that anyone between the height of  150 cm and 185 cm 
can drive it.

What is the probability that a randomly selected man will not be able to drive this 
car?
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X ~ Norm(μ=175, 𝝈=8)

P(X<150) + P(X>185)



Recap: Normal Distribution

X ~ Norm(μ=175, 𝝈=8)

P(X<150) + P(X>185)

= P((X-175)/8<(150-175)/8) + P((X-175)/8>(185-175)/8)

= P(Z < -3.125) + P(Z > 1.25)

= ( 1 - Φ(3.125) ) + ( 1 - Φ(1.25) )

= (1-0.999126) + (1-0.894350)

= 0.000874 + 0.10565

= 0.106524





Molecular binding is used at multiple levels

Each level has its own molecular interaction network 
Regulatory network:
RNA-level regulation
by DNA-binding proteins

Protein-Protein Interaction

Network

Protein-Metabolite 

Interactions:

Metabolic network



Biological example of a Gaussian: Energy of 
Protein-Protein Binding Interactions
● Proteins and other biomolecules (metabolites, drugs, DNA) specifically 

(and non-specifically) bind each other
● For specific bindings: Lock-and-Key theory
● For non-specific bindings: random contacts





Matlab exercise

1. In Matlab load PINT_binding_energy.mat with binding energy Eij (in units of kT at room 
temperature) for 430 pairs of interacting proteins from human, yeast, etc.

Data collected in 2007 from the PINT database 
http://www.bioinfodatabase.com/pint/
and analyzed in J. Zhang, S. Maslov, E. Shakhnovich, Molecular Systems Biology (2008)

2. Fit Gaussian to the distribution of Eij using dfittool 
3. Use “Exclude” button to generate the new exclusion rule to drop all points with  X<-23 from 

the fit
4. Use "New Fit" button to generate the new “Normal” fit with the exclusion rule you just 

created
5. Find mean (mu) and standard deviation (sigma)
6. Select “probability plot” from “Display type” dropdown menu to evaluate the quality of the 

plot. Where does the probability plot deviate from a straight line?



How does it compare with the experimental data?



Dissociation constant 

● Interaction between two molecules (say, proteins) is usually described in 
terms of dissociation constant 
Kij=1M exp(-Eij/kT)

● Law of Mass Action: the concentration Dij of a heterodimer formed out of two 
proteins with free (monomer) concentrations Ci  and Cj : Dij=CiCj/Kij

● What is the distribution of Kij?
○ it is called log-normal since the logarithm of Kij is the binding energy -Eij/kT which is normally 

distributed



Lognormal Distribution



Lognormal distribution

● Let W denote a normal random variable with mean of θ and variance of ω2, 
i.e., E(W) = θ and V(W) = ω2

● As a change of variable, let X = eW = exp(W) and W = ln(X)
● Now X is a lognormal random variable.



Lognormal distribution





What we learned so far…
● Random Events:

○ Working with events as sets: union, 
intersection, etc.

■ Some events are simple: Head vs 
Tails, Cancer vs Healthy

■ Some are more complex: 
10<Gene expression<100

■ Some are even more complex: 
Series of dice rolls: 1,3,5,3,2

○ Conditional probability:  P(A|B)=P(A ∩ 
B)/P(B)

○ Independent events: P(A|B)=P(A) or 
P(A ∩ B)= P(A)*P(B)

○ Bayes theorem: relates P(A|B) to P(B|A)

● Random variables:
○ Mean, Variance, Standard deviation. 

How to work with E(g(X))
○ Discrete (Uniform, Bernoulli, Binomial, 

Poisson, Geometric, Negative binomial, 
Hypergeometric, Power law);          
PMF: f(x)=Prob(X=x); CDF: 
F(x)=Prob(X≤x);

○ Continuous (Uniform, Exponential, 
Erlang, Gamma, Normal, Log-normal); 
PDF: f(x) such that Prob(X inside A)= ∫A 
f(x)dx; CDF: F(x)=Prob(X≤x)

Next step: work with multiple random 
variables measured together in the 
same series of random experiments



Joint Probability 
Distributions



Concept of Joint Probabilities

Biological systems are usually described not by a single random variable but by 
many random variables

Example: The expression state of a human cell: 
20,000 random variables Xi for each of its genes

A joint probability distribution describes the behavior of several random variables

We will start with just two random variables X and Y and generalize when 
necessary



Joint Probability Mass Function Defined

The joint probability mass function of the discrete random variables 𝑋 and  𝑌, 
denoted as  𝑓𝑋𝑌 (𝑥,𝑦), satisfies:



Example: # Repeats vs. Signal Bars

You use your cell phone to check your airline reservation. It asks you to speak the 
name of your departure city to the voice recognition system.

Let Y denote the number of times you have to state your departure city.

Let X denote the number of bars of signal strength on you cell phone.



Marginal Probability Distributions (discrete)

For a discrete joint PDF, there are marginal distributions for each random variable, 
formed by summing the joint PMF over the other variable.

Called marginal because they are written in the margins



Example: # Repeats vs. Signal Bars



Mean & Variance of X and Y are calculated using marginal 
distributions

μX =E(X)
μY =E(Y)

σX
2

 = V(X) = E(X2) - E(X)2

σY
2

 = V(Y) = E(Y2) - E(Y)2 



Mean & Variance of X and Y are calculated using marginal 
distributions
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μY =E(Y)

σX
2

 = V(X) = E(X2) - E(X)2

σY
2

 = V(Y) = E(Y2) - E(Y)2 



Mean & Variance of X and Y are calculated using marginal 
distributions

μX =E(X) = 2.35

μY =E(Y) = 2.49

σX
2

 = V(X) = E(X2) - E(X)2

                 = 6.15 - 2.352 = 0.6275

σY
2

 = V(Y) = E(Y2) - E(Y)2 
                 = 7.61 - 2.492 = 1.4099



Conditional Probability Distributions

P(Y=y|X=x)=P(X=x,Y=y)/P(X=x)=

=f(x,y)/fX(x)

P(Y=1|X=3) 
P(Y=2|X=3) 
P(Y=3|X=3) 
P(Y=4|X=3) 

= 0.25/0.55 = 0.455
= 0.20/0.55 = 0.364
= 0.05/0.55 = 0.091
= 0.05/0.55 = 0.091



Statistically Independent Events



Joint Random Variable Independence

● Joint random variables are independent if any of the following are met

● If X and Y and independent, the knowledge of the value of X does not change 
the probabilities for the values of Y

● If X and Y are dependent, the values of Y and influenced by the values of X





2/6+2/6 = 4/6
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P(X=0|Y=1) = P(X=0,Y=1)/P(Y=1) = 
(1/6)/(2/6) = 1/2  
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